Search results

Search for "ZnO nanorods" in Full Text gives 37 result(s) in Beilstein Journal of Nanotechnology.

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • , have gained much attention from many research teams. This study describes a low-cost photodetector based on CuO nanoparticles and ZnO nanorods operating in a wide range of light wavelengths (395, 464, 532, and 640 nm). Particularly, under 395 nm excitation, the heterostructure device exhibits high
  • nanoparticles and ZnO nanorods obtained via a simple and cost-effective synthesis process has great potential for optoelectronic applications. Keywords: CuO nanoparticles; heterojunction; optoelectronics; visible-light photodetector; ZnO nanorods; Introduction Optoelectronics is a field to accelerate the
  • ., temperature, concentrations of chemicals, and annealing time). ZnO nanorods and nanowires have attracted great interest in photodetectors because their chemical and physical properties are exceptional for electronics applications, and their fabrication strategies are more facile than those of other structures
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • conditions involved in the hydrothermal synthesis of ZnO make it an attractive growth method, widely used in recent years. A comprehensive review indicating the morphology of ZnO nanostructures grown using this method is given in [30]. Successful examples of ordered ZnO nanorods [6], one of most common ZnO
  • allowed for the decoration of vertically aligned cone-shaped ZnO nanorods with Ag NPs on their sides and their top ends [35], and magnetron sputtering [7][36]. Electron beam evaporation of, for example, a 30 nm Au layer on ZnO nanopillars arrays [37] or of ZnO-elevated Au dimer nanostructures (Figure 2a,b
  • ) [12] was carried out as well. Chou et al. employed a simple and rapid method, namely pulsed laser-induced photolysis to develop Au NPs on the surface of ZnO nanorods fabricated by the sol–gel method (Figure 2c,d) [38]. Various irradiation times were tested, indicating that a short irradiation time was
PDF
Album
Review
Published 27 May 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • ; gallium arsenide; photovoltaics; surface passivation; Introduction The atomic layer deposition (ALD) method is used for silicon passivation in photovoltaics. In recent years we proposed the usage of ALD for the construction of simplified Si-based cells [1]. Once zinc oxide (ZnO) nanorods were employed as
PDF
Album
Full Research Paper
Published 28 Jun 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • convenient method for growing NPs. By varying the synthesis parameters, a variety of nanostructures, such as spherical CeO2 NPs [61], lamellar MgO NPs [62], and even ZnO nanorods [69] can be obtained by using this method. In the sonochemical synthesis method, a high-intensity ultrasound produces an acoustic
PDF
Album
Review
Published 25 Sep 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • parallel steps or ribs. The more ordered ripple formation on nanorods can be associated with the confinement of the nanorod facets in comparison with the quasi-infinite surface of the flat substrates. Keywords: cluster ion bombardment; gas cluster ion beam; surface ripples; ZnO nanorods; Introduction The
  • ZnO nanorods irradiated by GCIB. The modification effects of the gas cluster ion beams on the nanostructured targets at different incidence angles, accelerating voltages, and ion fluences are studied. The differences between nanoripple formation on planar ZnO substrates and on nanorods are also
  • discussed. The results obtained in this study are of interest in the application of ZnO nanostructures for, e.g., gas sensing, solar cells, or field emitters, where controlled surface morphologies are required. Experimental We have grown ZnO nanorods on Si(100) substrates (HF-Kejing Materials Technology Co
PDF
Album
Full Research Paper
Published 24 Feb 2020

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • function of zeolitic imidazolate framework structures on ZnO nanorods [132]. Core–shell structures of zeolitic imidazolate frameworks and ZnO nanorods were prepared by direct growth of the framework on the ZnO nanorods. Limitation effects by the framework aperture provided improved selectivity for
PDF
Album
Review
Published 16 Oct 2019

A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water

  • Binjing Hu,
  • Qiang Sun,
  • Chengyi Zuo,
  • Yunxin Pei,
  • Siwei Yang,
  • Hui Zheng and
  • Fangming Liu

Beilstein J. Nanotechnol. 2019, 10, 1157–1165, doi:10.3762/bjnano.10.115

Graphical Abstract
  • ] synthesized pristine and Ce-doped ZnO with various doping concentrations via a chemical bath method. The morphology of the structures turned from flower-like to mixed morphology with pyramid shapes. Chouchene et al. [22] prepared Ce-doped ZnO nanorods by a solvothermal method. However, to the best of our
PDF
Album
Full Research Paper
Published 03 Jun 2019

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • that the response can be significantly improved. ZnO is widely used as a typical wide-bandgap (3.37 eV) metal-oxide gas sensor material. However, the problem with ZnO gas sensors is their poor selectivity [66]. Li et al. [67] synthesized urchin-like ZnO nanorods–graphene via a facile solvothermal
PDF
Album
Review
Published 09 Nov 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • , Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden 10.3762/bjnano.9.255 Abstract Zinc oxide (ZnO) nanorods (NRs) oriented along the crystallographic [001] axis are grown by the hydrothermal method on glass
  • with picosecond pulses resulting in Isat = 16 kW/cm2, which is close to our observations. Passive Q-switching by ZnO nanorods The laser experiments were performed with the NRs grown for 5 h, because they exhibited minimum insertion loss. Stable Q-switching was also observed for the NRs grown for 10 h
  • found elsewhere [31]. Field emission scanning electron microscope (FESEM) images of ZnO nanorods grown hydrothermally on glass substrates for (a,d) 5 h, (b,e) 10 h and (c,f) 15 h; (a,b,c) top- and (d,e,f) side-view. Images (b) and (e) are reproduced with permission from [28], copyright 2017, IEEE. (a) X
PDF
Album
Full Research Paper
Published 23 Oct 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • nanoplates), whereas the lowest sensitivity corresponded to ZnO nanorods with a large diameter (i.e., low surface-to-volume ratio). The efficiency of sedimentation is also related to the electronegativity of adsorbate: it has been shown that all observed ZnO morphologies exhibited significantly higher
  • of nanorods: equimolar aqueous solution of 0.1 M Zn(NO3)2 + 0.1 M C6H12N4. The growth process was divided into two stages: growth of ZnO nanorods at 90 °C for three hours, and selective etching of ZnO nanorods at 50 °C for eighteen hours. After the growth process, the samples were rinsed several
  • immersing for 5 min. To study the adsorption of other ions, the experiment was repeated using the same concentrations of Cd(NO3)2 aqueous solutions. In general, CV curves for Cd(NO3)2 solutions had the same tendency as for Pb(NO3)2 solutions: ZnO nanorods exhibit no sensitivity to changes in solution
PDF
Album
Full Research Paper
Published 11 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • displays, X-ray sources and cold-cathode electron sources [2]. 1D and 2D materials such as carbon nanotubes [3], ZnO nanorods [1], LaB6 nanowires [2], SnS2 nanosheets (NSs) [4], vertically aligned graphene [5], WS2 nanotubes [6], MoSe2 nanosheets [7], and MoS2 NSs [8][9][10] are potential field-emitter
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Gas-sensing behaviour of ZnO/diamond nanostructures

  • Marina Davydova,
  • Alexandr Laposa,
  • Jiri Smarhak,
  • Alexander Kromka,
  • Neda Neykova,
  • Josef Nahlik,
  • Jiri Kroutil,
  • Jan Drahokoupil and
  • Jan Voves

Beilstein J. Nanotechnol. 2018, 9, 22–29, doi:10.3762/bjnano.9.4

Graphical Abstract
  • -terminated nanocrystalline diamond (NCD) films and/or n-type ZnO nanorods (NRs) have been obtained via a facile microwave-plasma-enhanced chemical vapour deposition process or a hydrothermal growth procedure. The morphology and crystal structure of the synthesized materials was analysed with scanning
  • electron microscopy, X-ray diffraction measurements and Raman spectroscopy. The gas sensing properties of the sensors based on i) NCD films, ii) ZnO nanorods, and iii) hybrid ZnO NRs/NCD structures were evaluated with respect to oxidizing (i.e., NO2, CO2) and reducing (i.e., NH3) gases at 150 °C. The
  • materials and a variety of studies have been carried out to improve the response of these gas sensors [1][2][3][4]. In particular, ZnO nanorods with n-type semiconducting behaviour and large surface-to-volume ratio have attracted great interest due to their wide range of application possibilities in solar
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2018

Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles

  • Anurag Roy,
  • Partha Pratim Das,
  • Mukta Tathavadekar,
  • Sumita Das and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2017, 8, 210–221, doi:10.3762/bjnano.8.23

Graphical Abstract
  • voltage (VOC) of 0.67 V was achieved for the ZnO nanorod/nanoparticle assembled structure. The introduction of ZnO nanorods over the nanoparticle led to a significant enhancement of the overall efficiency compared to the corresponding bare nanoparticles. Keywords: DSSC; QDSSC; quantum dot; solar cells
  • , we have reported the advantages of using 1D ZnO nanorods compared to nanoparticles in DSSCs using N719 as a photosensitizer [31]. Due to the reduced grain boundaries and direct conjunction pathway, 1D nanorods can diffuse electrons faster than nanoparticles and other morphologies. However
  • performance after sensitization with colloidal CdS. In addition, by using 1D ZnO nanorods as a scattering layer, improved photovoltaic activity of ZnO upon sensitization with colloidal CdS could be achieved [32][33]. Experimental Materials The raw material used for the synthesis of Cd(NO3)2, 3H2O, Na2S·7H2O
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 82–90, doi:10.3762/bjnano.8.9

Graphical Abstract
  • metal oxide with Pt nanoparticles. Gurav et al. [40] reported an improvement of 60% in the response towards LPG detection at an operating temperature of 498 K using ZnO nanorods functionalized by catalytic Pd NPs. Moreover, the Pd-sensitized vertically aligned ZnO nanorods showed higher selectivity
  • Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Laboratory Functional Materials and Technologies for Sustainable Applications - Brindisi Research Center, Brindisi, Italy CNR-IFN Bari, Bari, Italy 10.3762/bjnano.8.9 Abstract Pristine and electrochemically Pd-modified ZnO
  • nanorods (ZnO NRs) were proposed as active sensing layers in chemiresistive gas sensors for hydrocarbon (HC) gas detection (e.g., CH4, C3H8, C4H10). The presence of Pd nanoparticles (NPs) on the surface of ZnO NRs, obtained after the thermal treatment at 550 °C, was revealed by morphological and surface
PDF
Album
Full Research Paper
Published 10 Jan 2017

Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

  • Suneel Kumar,
  • Rahul Sharma,
  • Vipul Sharma,
  • Gurunarayanan Harith,
  • Vaidyanathan Sivakumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2016, 7, 1684–1697, doi:10.3762/bjnano.7.161

Graphical Abstract
  • , increasing the photo response range and enhancing the interfacial charge transfer [22]. We have focused our study on the coupling of ZnO nanorods with nanoparticles of CdS, a semiconductor active under visible light, to form coupled CdS–ZnO heterojunction nanostructures. The CdS nanoparticles are an
  • by vacuum drying overnight at same temperature. Synthesis of ZnO nanorods ZnO nanorods (NR) were synthesized through a previously reported solvothermal method [37]. In brief, 10 mL of 0.2 M zinc chloride (ZnCl2) solution in ethanol was added into 70 mL of 0.5 M sodium hydroxide (NaOH) solution
  • XRD patterns of ZnO nanorods show peaks at 2θ = 31.67, 34.31, 36.14, 47.40, 56.52, 62.73, 66.28, 67.91 and 69.03°, which could be assigned to the (100), (002), (101), (102), (110), (103), (200), (112) and (201) lattice planes, respectively, indicating the prepared ZnO NR have polycrystalline wurtzite
PDF
Album
Full Research Paper
Published 11 Nov 2016

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • mesoporous TiO2 as the electron conductor, or when compared to a planar cell based on ALD-grown Sb2S3 [5]. The latter corroborates the benefit of a conformal coating and controlled thickness that is characteristic for ALD. As we have previously shown, the use of ZnO nanorods as the structured substrate and
  • previous section. To further boost the current density, one is likely to benefit from the use of a stuctured electron-conducting substrate such as a layer of ZnO nanorods. Conclusion We focused on the optimization of the properties of Sb2S3 grown by chemical spray pyrolysis (CSP) of an ultrasonically
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

  • Bilel Chouchene,
  • Tahar Ben Chaabane,
  • Lavinia Balan,
  • Emilien Girot,
  • Kevin Mozet,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2016, 7, 1338–1349, doi:10.3762/bjnano.7.125

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

  • Saurav Kumar,
  • Sudeshna Bagchi,
  • Senthil Prasad,
  • Anupma Sharma,
  • Ritesh Kumar,
  • Rishemjit Kaur,
  • Jagvir Singh and
  • Amol P. Bhondekar

Beilstein J. Nanotechnol. 2016, 7, 501–510, doi:10.3762/bjnano.7.44

Graphical Abstract
  • - Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India, Research Services, University of Alberta, Edmonton, AB, Canada T6G2E1 10.3762/bjnano.7.44 Abstract Zinc oxide (ZnO) and bacteriorhodopsin (bR) hybrid nanostructures were fabricated by immobilizing bR on ZnO thin films and ZnO nanorods
  • bR. Results In this work, ZnO thin films (ZnO-TF) and ZnO nanorods (ZnO-NRs) were grown via the hydrothermal method on indium tin oxide (ITO) substrates (25 × 25 mm) and both structures were used for the preparation of a sensitive film for gas testing. The precursor solution (zinc acetate dihydrate
PDF
Album
Full Research Paper
Published 04 Apr 2016

Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2016, 7, 22–31, doi:10.3762/bjnano.7.3

Graphical Abstract
  • nanostructures were lower than those of pristine and Au-doped ZnO nanorods, revealing that for NO2 gas-sensing the rod-like structure and the intimate contact between stabilized Au NPs and ZnO nanorods have a significant positive effect on the resistance of sensors and, consequently, their response. Experimental
  • decorated with spherical Au NPs. In the case of Au@ZnO annealed at 300 °C, the density of Au NPs on ZnO nanostructures was higher than that in the case of hybrid nanocomposites annealed at 550 °C in which the surface of ZnO nanorods was decorated with only few Au NPs. The annealing temperature strongly
  • . Comparing the pristine ZnO nanostructures annealed at the two different temperatures the responses of ZnO nanorods formed at 550 °C were higher than those of ZnO nanospheres obtained at 300 °C. Thus, the poor response of ZnO nanospheres compared to ZnO nanorods, although their surface area is higher, is
PDF
Album
Full Research Paper
Published 08 Jan 2016

Blue and white light emission from zinc oxide nanoforests

  • Nafisa Noor,
  • Luca Lucera,
  • Thomas Capuano,
  • Venkata Manthina,
  • Alexander G. Agrios,
  • Helena Silva and
  • Ali Gokirmak

Beilstein J. Nanotechnol. 2015, 6, 2463–2469, doi:10.3762/bjnano.6.255

Graphical Abstract
  • , University of Connecticut, Storrs, Connecticut 06269, USA 10.3762/bjnano.6.255 Abstract Blue and white light emission is observed when high voltage stress is applied using micrometer-separated tungsten probes across a nanoforest formed of ZnO nanorods. The optical spectrum of the emitted light consistently
  • rise to light emission. Experimental ZnO growth Chemical bath deposition (CBD), a low-cost solution-based technique [18][19], is used to grow ZnO nanorods on oxidized silicon wafers with previously fabricated, highly doped, p-type, nanocrystalline silicon microstructures. The samples were precleaned by
  • hexahydrate, 25 mM of hexamethylenetetramine and 6 mM of poly(ethyleneimine) for 24 h, and kept at 90 °C. The process yields 2–2.5 μm long ZnO nanorods homogeneously grown along the c-direction of the wurtzite structure with 50–250 nm diameter (Figure 1) on top of a very thin layer of ZnO film (≈2–3 nm
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2015

Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

  • Sini Kuriakose,
  • D. K. Avasthi and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2015, 6, 928–937, doi:10.3762/bjnano.6.96

Graphical Abstract
  • through an oriented attachment mechanism, leading to the formation of ZnO nanorods and nanosheets on the surface of the nanocomposites. The schematic diagram depicting the growth mechanism is shown in Figure 5. Irradiation of the ZnO–CuO nanocomposite with 90 MeV Ni7+ ions results in localized melting and
  • estimating the band gap energies. Raman spectra from pristine and irradiated ZnO–CuO nanocomposite samples. Growth mechanism of ZnO nanorods and nanosheets in the nanocomposites. (a–e) UV–visible absorption spectra showing the sun-light-driven time-dependent photocatalytic degradation of MB dye through
PDF
Album
Full Research Paper
Published 10 Apr 2015

Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

  • Florian Waltz,
  • Hans-Christoph Schwarz,
  • Andreas M. Schneider,
  • Stefanie Eiden and
  • Peter Behrens

Beilstein J. Nanotechnol. 2015, 6, 799–808, doi:10.3762/bjnano.6.83

Graphical Abstract
  • band gap (3.37 eV) (data not shown). However, the final evidence is presented by the efficient growth of ZnO on the seeded slides; in contrast, unseeded slides did not properly support the growth of ZnO. Step 2: First CBD In the absence of hyaluronic acid (HYA), highly vertically aligned ZnO nanorods
  • grow on priorly seeded glass slides, when the procedure described in the Experimental section is applied. The growth of aligned ZnO nanorods arrays on different substrates has been previously reported [15][17][43][44]. The scanning electron micrographs in Figure 2 show a nanorod array that was grown
  • resulting zinc oxide, HYA was dissolved in water during the first CBD at different time intervals (0, 15, 30 and 45 min). The growth of the ZnO nanorods (Figure 2) is assumed to proceed continuously on the seeded glass slides until HYA is added to the reaction mixture, which at this point may affect the
PDF
Album
Full Research Paper
Published 24 Mar 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO
  • nanorods and the growth rate along the (002) direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly
  • associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be
PDF
Album
Full Research Paper
Published 12 Mar 2015
Other Beilstein-Institut Open Science Activities